1
GATE ECE 2015 Set 2
Numerical
+1
-0
Two casual discrete-time signals $$x\left[ n \right]$$ and $$y\left[ n \right]$$ =$$\sum\limits_{m = 0}^n x \left[ m \right]$$. If the z-transform of y$$\left[ n \right]$$=$${2 \over {z{{(z - 1)}^2}}}$$ , the value of $$x\left[ 2 \right]$$ is _____________________
Your input ____
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The output of a standrad second-order system for a unit step input is given as $$y(t) = 1 - {2 \over {\sqrt 3 }}{e^{ - t}}\cos \left( {\sqrt 3 t - {\pi \over 6}} \right)$$.

The transfer function of the system is

A
$${2 \over {(s + 2)(s + \sqrt 3) }}$$
B
$${1 \over {{s^2} + 2s + 1}}$$
C
$${3 \over {{s^2} + 2s + 3}}$$
D
$${3 \over {{s^2} + 2s + 4}}$$
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the imulse response h(t) of the system is
A
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
B
$${{ - 1} \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
C
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u(t)$$
D
$${{ - 1} \over 5}{e^{3t}}u( - t) - {1 \over 5}{e^{ - 2t}}u(t)$$
4
GATE ECE 2015 Set 2
Numerical
+2
-0
The value of the integral $$\int_{ - \infty }^\infty {12\,\cos (2\pi )\,{{\sin (4\pi t)} \over {4\pi t}}\,dt\,} $$ is
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12