1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two friends A and B apply for a job in the same company. The probabilities of A getting selected is $\frac{2}{5}$ and that of B is $\frac{4}{7}$. Then the probability, that one of them is selected, is

A
$\frac{8}{35}$
B
$\frac{18}{35}$
C
$\frac{26}{35}$
D
$\frac{34}{35}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If a random variable X has the following probability distribution values

$\mathrm{X}$ 0 1 2 3 4 5 6 7
$\mathrm{P(X):}$ 0 $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{k^2}$ $\mathrm{2k^2}$ $\mathrm{7k^2+k}$

Then $P(X \geq 6)$ has the value

A
$\frac{19}{100}$
B
$\frac{81}{100}$
C
$\frac{9}{100}$
D
$\frac{91}{100}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A random variable X takes the values $0,1,2,3$ and its mean is 1.3 . If $\mathrm{P}(\mathrm{X}=3)=2 \mathrm{P}(\mathrm{X}=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is

A
0.2
B
0.1
C
0.3
D
0.4
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Three persons $\mathrm{P}, \mathrm{Q}$ and R independently try to hit a target. If the probabilities of their hitting the target are $\frac{3}{4}, \frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by P or Q but not by $R$, is

A
$\frac{15}{64}$
B
$\frac{21}{64}$
C
$\frac{39}{64}$
D
$\frac{9}{64}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12