1
MHT CET 2022 11th August Evening Shift
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then mean of number of kings is

A
$$\frac{4}{169}$$
B
$$\frac{1}{13}$$
C
$$\frac{1}{169}$$
D
$$\frac{2}{13}$$
2
MHT CET 2021 24th September Evening Shift
+2
-0

The probability that at least one of the events $$E_1$$ and $$E_2$$ occurs is 0.6. If the simultaneous occurrence of $$\mathrm{E}_1$$ and $$\mathrm{E}_2$$ is $$0.2, \mathrm{P}\left(\mathrm{E}_1^{\prime}\right)+\mathrm{P}\left(\mathrm{E}_2^{\prime}\right)=$$

A
0.4
B
1.6
C
1.2
D
0.8
3
MHT CET 2021 24th September Evening Shift
+2
-0

Two dice are thrown simultaneously. If X denotes the number of sixes, then the expectation of X is

A
3
B
2
C
$$\frac{1}{3}$$
D
$$\frac{2}{3}$$
4
MHT CET 2021 24th September Evening Shift
+2
-0

The probability distribution of a random variable X is

$$\mathrm{X=x}$$ 1 2 3 ......... $$\mathrm{n}$$
$$\mathrm{P(X=x)}$$ $$\mathrm{\frac{1}{n}}$$ $$\mathrm{\frac{1}{n}}$$ $$\mathrm{\frac{1}{n}}$$ ......... $$\mathrm{\frac{1}{n}}$$

then Var(X) =

A
$$\frac{\mathrm{n}^2-1}{12}$$
B
$$\frac{n^2-n}{6}$$
C
$$\frac{n^2-n}{12}$$
D
$$\frac{\mathrm{n}^2-1}{6}$$
EXAM MAP
Medical
NEET