There are three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$, one of which must and only one can happen. The odds are 8:3 against $\mathrm{A}, 5: 2$ against B and the odds against C is $43: 17 \mathrm{k}$, then value of k is
Four persons can hit a target correctly with probabilities $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
If the mean and the variance of a Binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than one is equal to
A bag contains 4 red and 3 black balls. One ball is drawn and then replaced in the bag and the process is repeated. Let X denote the number of times black ball is drawn in 3 draws. Assuming that at each draw each ball is equally likely to be selected, then probability distribution of $X$ is given by