1
MHT CET 2021 24th September Evening Shift
+2
-0

The probability distribution of a random variable X is

$$\mathrm{X=x}$$ 1 2 3 ......... $$\mathrm{n}$$
$$\mathrm{P(X=x)}$$ $$\mathrm{\frac{1}{n}}$$ $$\mathrm{\frac{1}{n}}$$ $$\mathrm{\frac{1}{n}}$$ ......... $$\mathrm{\frac{1}{n}}$$

then Var(X) =

A
$$\frac{\mathrm{n}^2-1}{12}$$
B
$$\frac{n^2-n}{6}$$
C
$$\frac{n^2-n}{12}$$
D
$$\frac{\mathrm{n}^2-1}{6}$$
2
MHT CET 2021 24th September Evening Shift
+2
-0

A fair coin is tossed for a fixed number of times. If probability of getting 7 heads is equal to probability of getting 9 heads, then probability of getting 2 heads is

A
$$\frac{1}{15}$$
B
$$\frac{15}{2^{13}}$$
C
$$\frac{15}{2^8}$$
D
$$\frac{2}{15}$$
3
MHT CET 2021 24th September Morning Shift
+2
-0

If the probability distribution function of a random variable X is given as

$$\mathrm{X=x_i}$$ $$-2$$ $$-1$$ 0 1 2
$$\mathrm{P(X=x_i)}$$ 0.2 0.3 0.15 0.25 0.1

Then F(0) is equal to

A
$$\mathrm{P}(\mathrm{X}>0)$$
B
$$\mathrm{1-P(X>0)}$$
C
$$1-\mathrm{P}(\mathrm{X}<0)$$
D
$$\mathrm{P}(\mathrm{X}<0)$$
4
MHT CET 2021 24th September Morning Shift
+2
-0

If $$\mathrm{P}(\mathrm{A})=\frac{3}{10}, \mathrm{P}(\mathrm{B})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{5}$$, then $$\mathrm{P}(\mathrm{A} / \mathrm{B}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})=$$

A
$$\frac{1}{3}$$
B
$$\frac{1}{12}$$
C
$$\frac{1}{10}$$
D
$$\frac{1}{4}$$
EXAM MAP
Medical
NEET