1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $a \sin x+b \cos x$ is

A
$\sqrt{a^2+b^2}$
B
$\sqrt{a^2-b^2}$
C
$\mathrm{a}^2+\mathrm{b}^2$
D
$\mathrm{a}^2-\mathrm{b}^2$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \theta=\frac{1}{2}\left(x+\frac{1}{x}\right)$, then $\sin 3 \theta+\frac{1}{2}\left(x^3+\frac{1}{x^3}\right)=$

A
0
B
1
C
$\frac{1}{4}$
D
2
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \mathrm{A}+\sin \mathrm{B}=x$ and $\cos \mathrm{A}+\cos \mathrm{B}=y$, then $\sin (A+B)=$

A
$\frac{2 x y}{x^2+y^2}$
B
$\frac{x y}{x^2+y^2}$
C
$\frac{2 x y}{y^2-x^2}$
D
$\frac{x y}{y^2-x^2}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \mathrm{A}=\mathrm{n} \sin (\mathrm{A}+2 \mathrm{~B})$, then $\tan (\mathrm{A}+\mathrm{B})=$

A
$\frac{1+n}{2-n} \cdot \tan B$
B
$\frac{1-n}{1+n} \cdot \tan B$
C
$\frac{1-n}{2+n} \cdot \tan B$
D
$\frac{1+n}{1-n} \cdot \tan B$
MHT CET Subjects
EXAM MAP