1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x+\cos x=1$ is

A
$x=2 \mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
not existing
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $\tan x+\sec x=2 \cos x$ in $[0,2 \pi]$ is

A
2
B
3
C
0
D
1
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If angle $\theta$ in $[0,2 \pi]$ satisfies both the equations $\cot \theta=\sqrt{3}$ and $\sqrt{3} \sec \theta+2=0$, then $\theta$ is equal to

A
$\frac{\pi}{6}$
B
  $\frac{7 \pi}{6}$
C
$\frac{5 \pi}{6}$
D
$\frac{11 \pi}{6}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If for certain $x, 3 \cos x \neq 2 \sin x$, then the general solution of, $\sin ^2 x-\cos 2 x=2-\sin 2 x$, is

A
$(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
B
$(2 \mathrm{n}+1) \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$\frac{\mathrm{n} \pi}{2}+1, \mathrm{n} \in \mathbb{Z}$
MHT CET Subjects
EXAM MAP