1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then the general solution of $\theta$ is

A
$2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{3}, n \in \mathbb{Z}$
C
$\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $16^{\sin ^2 x}+16^{\cos ^2 x}=10$ in $0 \leqslant x \leqslant 2 \pi$ are

A
8
B
10
C
6
D
4
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$, then the general solution of $\theta$ is

A
$n \pi+\frac{\pi}{4}, n \in \mathbb{Z}$
B
$\quad n \pi+(-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$
C
$2 \mathrm{n} \pi \pm \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm 3 \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $3 \sin 2 \theta=2 \sin 3 \theta$ and $0<\theta<\pi$, then the value of $\sin \theta$ is equal to

A
$\frac{\sqrt{17}}{4}$
B
$\frac{5 \sqrt{2}}{4}$
C
$\frac{3 \sqrt{2}}{4}$
D
$\frac{\sqrt{15}}{4}$
MHT CET Subjects
EXAM MAP