1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $16^{\sin ^2 x}+16^{\cos ^2 x}=10$ in $0 \leqslant x \leqslant 2 \pi$ are

A
8
B
10
C
6
D
4
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$, then the general solution of $\theta$ is

A
$n \pi+\frac{\pi}{4}, n \in \mathbb{Z}$
B
$\quad n \pi+(-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$
C
$2 \mathrm{n} \pi \pm \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm 3 \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $3 \sin 2 \theta=2 \sin 3 \theta$ and $0<\theta<\pi$, then the value of $\sin \theta$ is equal to

A
$\frac{\sqrt{17}}{4}$
B
$\frac{5 \sqrt{2}}{4}$
C
$\frac{3 \sqrt{2}}{4}$
D
$\frac{\sqrt{15}}{4}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The possible values of $\theta \in(0, \pi)$ such that $\sin \theta+\sin (4 \theta)+\sin (7 \theta)=0$ are

A
$\frac{\pi}{4}, \frac{5 \pi}{12}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
B
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{35 \pi}{36}$
C
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{10}$
D
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{4 \pi}{9}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
MHT CET Subjects
EXAM MAP