1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
The number of values of $x$ in the interval $[0,3 \pi]$ satisfying the equation $2 \sin ^2 x+5 \sin x-3=0$ is
A
4
B
6
C
2
D
1
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then the general solution of $\theta$ is

A
$2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{3}, n \in \mathbb{Z}$
C
$\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $16^{\sin ^2 x}+16^{\cos ^2 x}=10$ in $0 \leqslant x \leqslant 2 \pi$ are

A
8
B
10
C
6
D
4
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$, then the general solution of $\theta$ is

A
$n \pi+\frac{\pi}{4}, n \in \mathbb{Z}$
B
$\quad n \pi+(-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$
C
$2 \mathrm{n} \pi \pm \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm 3 \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
MHT CET Subjects
EXAM MAP