1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan 3 \theta=\cot \theta$, then $\theta=$

A
$\frac{(2 n+1) \pi}{8}, n \in \mathbb{Z}$
B
$\quad \frac{(2 n+1) \pi}{4}, n \in \mathbb{Z}$
C
$\quad \frac{(\mathrm{n}+2) \pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$n \pi, n \in \mathbb{Z}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the equation $\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}$ is

A
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}+\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
B
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}-\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $P=\{\theta / \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta / \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets, then

A
$\mathrm{P} \subset \mathrm{Q}$ and $\mathrm{Q}-\mathrm{P} \neq \phi$
B
$\mathrm{Q} \not \subset \mathrm{P}$
C
$P \not Q$
D
$\mathrm{P}=\mathrm{Q}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of values of $x$ in the interval $(0,5 \pi)$ satisfying the equation $3 \sin ^2 x-7 \sin x+2=0$

A
0
B
5
C
6
D
10
MHT CET Subjects
EXAM MAP