1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

One hundred identical coins, each with probability p , of showing up heads are tossed once. If $0<\mathrm{p}<1$ and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of $p$ is

A
$\frac{1}{2}$
B
$\frac{49}{101}$
C
$\frac{50}{101}$
D
$\frac{51}{101}$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The p.m.f. of a random variable X is given by

$$\begin{aligned} \mathrm{P}[\mathrm{X}=x] & =\frac{\binom{5}{x}}{2^5}, \text { if } x=0,1,2,3,4,5 \\ & =0, \text { otherwise } \end{aligned}$$

Then which of the following is not correct?

A
$\mathrm{P}[\mathrm{X}=0]=\mathrm{P}[\mathrm{X}=5]$
B
$\mathrm{P}[\mathrm{X} \leq 1]=\mathrm{P}[\mathrm{X} \geq 4]$
C
$\mathrm{P}[\mathrm{X} \leq 2]=\mathrm{P}[\mathrm{X} \geq 3]$
D
$\mathrm{P}[\mathrm{X} \leq 2]>P[\mathrm{X} \geq 3]$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If three fair coins are tossed, then variance of number of heads obtained, is

A
0.25
B
3
C
0.75
D
1.5
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A$ and $B$ are two independent events such that $\mathrm{P}\left(\mathrm{A}^{\prime}\right)=0.75, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.65$ and $\mathrm{P}(\mathrm{B})=\mathrm{p}$, then value of $p$ is

A
$\frac{9}{14}$
B
$\frac{7}{15}$
C
$\frac{5}{14}$
D
$\frac{8}{15}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12