1
MHT CET 2021 20th September Morning Shift
+1
-0

Let '$$\mathrm{R_1}$$' and '$$\mathrm{R_2}$$' are radii of two mercury drops. A big mercury drop is formed from them under isothermal conditions. The radius of the resultant drop is

A
$$\sqrt{\mathrm{R}_1^2+\mathrm{R}_2^2}$$
B
$$\left(\mathrm{R}_1^3+\mathrm{R}_2^3\right)^{\frac{1}{3}}$$
C
$$\sqrt{\mathrm{R}_1^2-\mathrm{R}_2^2}$$
D
$$\frac{\mathrm{R}_1+\mathrm{R}_2}{2}$$
2
MHT CET 2021 20th September Morning Shift
+1
-0

The force required to take away a flat circular plate of radius $$2 \mathrm{~cm}$$ from the surface of water is $$\left[\right.$$Surface tension of water $$\left.=70 \times 10^{-3} \mathrm{Nm}^{-1}, \pi=\frac{22}{7}\right]$$

A
$$4.4 \times 10^{-4} \mathrm{~N}$$
B
$$8.8 \times 10^{-3} \mathrm{~N}$$
C
$$6.6 \times 10^{-4} \mathrm{~N}$$
D
$$11 \times 10^{-3} \mathrm{~N}$$
3
MHT CET 2020 16th October Morning Shift
+1
-0

Water rises in a capillary tube of radius $$r$$ upto a height $$h$$. The mass of water in a capillary is $$m$$. The mass of water that will rise in a capillary of radius $$\frac{r}{4}$$ will be

A
$$4 m$$
B
$$\frac{m}{4}$$
C
$$m$$
D
$$\frac{4}{m}$$
4
MHT CET 2020 16th October Morning Shift
+1
-0

A small metal sphere of mass $$M$$ and density $$d_1$$ when dropped in a jar filled with liquid moves with terminal velocity after sometime. The viscous force acting on the sphere is ($$d_2=$$ density of liquid and $$g=$$ gravitational acceleration)

A
$$M g\left(\frac{d_1}{d_2}\right)$$
B
$$M g\left(1-\frac{d_2}{d_1}\right)$$
C
$$M g\left(\frac{d_2}{d_1}\right)$$
D
$$M g\left(1-\frac{d_1}{d_2}\right)$$
EXAM MAP
Medical
NEET