1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha$ and $\beta$ be two real roots of the equation $(k+1) \tan ^2 x-\sqrt{2} \lambda \tan x=(1-k)$ where $k(\neq-1)$ and $\lambda$ are real numbers. If $\tan ^2(\alpha+\beta)=50$, then a value of $\lambda$ is

A
$5 \sqrt{2}$
B
$10 \sqrt{2}$
C
10
D
5
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan x=\frac{3}{4}$ and $\pi< x< \frac{3 \pi}{2}$, then $\cos \frac{x}{2}=$ ___________

A
$\frac{-2}{5}$
B
$\frac{2}{5}$
C
$\frac{1}{\sqrt{10}}$
D
$\frac{-1}{\sqrt{10}}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\cos \left(30^{\circ}, 30^{\prime}\right)$ is given that $1^{\circ}=0.0175^{\circ}$ and $\cos 30^{\circ}=0.8660$

A
0.8778
B
0.7666
C
0.7916
D
0.8616
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\alpha+\beta+\gamma=\pi$, then the expression $\sin ^2 \alpha+\sin ^2 \beta-\sin ^2 \gamma$ has the value

A
$2 \sin \alpha \sin \beta \sin \gamma$
B
$2 \cos \alpha \sin \beta \sin \gamma$
C
$2 \sin \alpha \cos \beta \sin \gamma$
D
$2 \sin \alpha \sin \beta \cos \gamma$
MHT CET Subjects
EXAM MAP