1
MHT CET 2023 10th May Evening Shift
+2
-0

If the sum of mean and variance of a Binomial Distribution is $$\frac{15}{2}$$ for 10 trials, then the variance is

A
1.5
B
2.5
C
4.5
D
3.5
2
MHT CET 2023 10th May Evening Shift
+2
-0

In a game, 3 coins are tossed. A person is paid ₹ 7 /-, if he gets all heads or all tails; and he is supposed to pay ₹ 3 /-, if he gets one head or two heads. The amount he can expect to win on an average per game is ₹

A
$$-$$0.5
B
0.5
C
1
D
$$-$$1
3
MHT CET 2023 10th May Evening Shift
+2
-0

A fair die is tossed twice in succession. If $$\mathrm{X}$$ denotes the number of sixes in two tosses, then the probability distribution of $$\mathrm{X}$$ is given by

A
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{25}{36}$$ $$\frac{1}{36}$$ $$\frac{5}{18}$$
B
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{5}{18}$$ $$\frac{1}{36}$$ $$\frac{25}{36}$$
C
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{25}{36}$$ $$\frac{5}{18}$$ $$\frac{1}{36}$$
D
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{5}{18}$$ $$\frac{25}{36}$$ $$\frac{1}{36}$$
4
MHT CET 2023 10th May Morning Shift
+2
-0

For a binomial variate $$\mathrm{X}$$ with $$\mathrm{n}=6$$ if $$P(X=4)=\frac{135}{2^{12}}$$, then its variance is

A
$$\frac{8}{9}$$
B
$$\frac{1}{4}$$
C
4
D
$$\frac{9}{8}$$
EXAM MAP
Medical
NEET