1
MHT CET 2021 21th September Morning Shift
+2
-0

If $$\mathrm{X}$$ is a random variable with p.m.f. as follows.

\begin{aligned} \mathrm{P}(\mathrm{X}=\mathrm{x}) & =\frac{5}{16}, \mathrm{x}=0,1 \\ & =\frac{\mathrm{kx}}{48}, \mathrm{x}=2, \quad \text { then } \mathrm{E}(\mathrm{x})= \\ & =\frac{1}{4}, \mathrm{x}=3 \end{aligned}

A
1.1875
B
1.3125
C
1.5625
D
0.5625
2
MHT CET 2021 20th September Evening Shift
+2
-0

The p.m.f. of a random variable X is $$\mathrm{P(X = x) = {1 \over {{2^5}}}\left( {_x^5} \right),x = 0,1,2,3,4,5}=0$$ then

A
$$\mathrm{P}(\mathrm{X} \leq 2)<\mathrm{P}(\mathrm{X} \geq 3)$$
B
$$\mathrm{P}(\mathrm{X} \leq 2)>\mathrm{P}(\mathrm{X} \geq 3)$$
C
$$\mathrm{P}(\mathrm{X} \leq 2)=2 \mathrm{P}(\mathrm{X} \geq 3)$$
D
$$\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X} \geq 3)$$
3
MHT CET 2021 20th September Evening Shift
+2
-0

The variance of the following probability distribution is,

A
$$\frac{1}{8}$$
B
$$\frac{5}{8}$$
C
$$\frac{1}{4}$$
D
$$\frac{3}{8}$$
4
MHT CET 2021 20th September Evening Shift
+2
-0

If the sum of mean and variance of a binomial distribution for 5 trials is 1.8, then probability of a success is

A
0.2
B
0.6
C
0.4
D
0.8
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination