If $$\mathrm{A}$$ and $$\mathrm{B}$$ are two events such that $$\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{3}$$, then the value of $$\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime} / \mathrm{A}^{\prime}\right)$$ is
Let a random variable $$\mathrm{X}$$ have a Binomial distribution with mean 8 and variance 4. If $$\mathrm{P}(\mathrm{X} \leq 2)=\frac{\mathrm{K}}{2^{16}}$$, then $$\mathrm{K}$$ is
From a lot of 20 baskets, which includes 6 defective baskets, a sample of 2 baskets is drawn at random one by one without replacement. The expected value of number of defective basket is
Three of six vertices of a regular hexagon are chosen at random. The probability that the triangle with these three vertices is equilateral, equals ___________.