1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The possible values of $\theta \in(0, \pi)$ such that $\sin \theta+\sin (4 \theta)+\sin (7 \theta)=0$ are

A
$\frac{\pi}{4}, \frac{5 \pi}{12}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
B
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{35 \pi}{36}$
C
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{10}$
D
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{4 \pi}{9}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan 3 \theta=\cot \theta$, then $\theta=$

A
$\frac{(2 n+1) \pi}{8}, n \in \mathbb{Z}$
B
$\quad \frac{(2 n+1) \pi}{4}, n \in \mathbb{Z}$
C
$\quad \frac{(\mathrm{n}+2) \pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$n \pi, n \in \mathbb{Z}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the equation $\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}$ is

A
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}+\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
B
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}-\frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $P=\{\theta / \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta / \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets, then

A
$\mathrm{P} \subset \mathrm{Q}$ and $\mathrm{Q}-\mathrm{P} \neq \phi$
B
$\mathrm{Q} \not \subset \mathrm{P}$
C
$P \not Q$
D
$\mathrm{P}=\mathrm{Q}$
MHT CET Subjects
EXAM MAP