Compare the rate of loss of heat from a metal sphere at $$627^{\circ} \mathrm{C}$$ with the rate of loss of heat from the same sphere at $$327^{\circ} \mathrm{C}$$, if the temperature of the surrounding is $$27^{\circ} \mathrm{C}$$. (nearly)
The volume of a metal block increases by $$0.225 \%$$ when its temperature is increased by $$30^{\circ} \mathrm{C}$$. Hence coefficient of linear expansion of the material of metal block is
A monoatomic ideal gas initially at temperature '$$\mathrm{T}_1$$' is enclosed in a cylinder fitted with massless, frictionless piston. By releasing the piston suddenly the gas is allowed to expand to adiabatically to a temperature '$$\mathrm{T}_2$$'. If '$$\mathrm{L}_1$$' and '$$\mathrm{L}_2$$' are the lengths of the gas columns before and after expansion respectively, then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is
Let $$\gamma_1$$ be the ratio of molar specific heat at constant pressure and molar specific heat at constant volume of a monoatomic gas and $$\gamma_2$$ be the similar ratio of diatomic gas. Considering the diatomic gas molecule as a rigid rotator, the ratio $$\frac{\gamma_2}{\gamma_1}$$ is