1
MHT CET 2021 24th September Morning Shift
+1
-0

A monoatomic ideal gas initially at temperature $$\mathrm{T}_1$$ is enclosed in a cylinder fitted with 8 frictionless piston. The gas is allowed to expand adiabatically to a temperature $$\mathrm{T}_2$$ by releasing the piston suddenly. $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ are the lengths of the gas columns before and after the expansion respectively. Then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is

A
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{2 / 3}$$
B
$$\left(\frac{L_1}{L_2}\right)^{2 / 3}$$
C
$$\left(\frac{\mathrm{L}_1}{\mathrm{~L}_2}\right)^{1 / 2}$$
D
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{1 / 2}$$
2
MHT CET 2021 24th September Morning Shift
+1
-0

For a monoatomic gas, the work done at constant pressure is '$$\mathrm{W}$$' The heat supplied at constant volume for the same rise in temperature of the gas is

$$[\gamma=\frac{C_p}{C_v}=\frac{5}{2}$$ for monoatomic gas]

A
$$2 \mathrm{~W}$$
B
$$\mathrm{W}$$
C
$$\frac{W}{2}$$
D
$$\frac{3 W}{2}$$
3
MHT CET 2021 24th September Morning Shift
+1
-0

An ideal gas with pressure $$\mathrm{P}$$, volume $$\mathrm{V}$$ and temperature $$\mathrm{T}$$ is expanded isothermally to a volume $$2 \mathrm{~V}$$ and a final pressure $$\mathrm{P}_{\mathrm{i}}$$. The same gas is expanded adiabatically to a volume $$2 \mathrm{~V}$$, the final pressure is $$\mathrm{P}_{\mathrm{a}}$$. In terms of the ratio of the two specific heats for the gas '$$\gamma$$', the ratio $$\frac{P_i}{P_a}$$ is

A
$$2^{\gamma+1}$$
B
$$2^{\gamma-1}$$
C
$$2^{1-\gamma}$$
D
$$2^\gamma$$
4
MHT CET 2021 24th September Morning Shift
+1
-0

At what temperature does the average translational kinetic energy of a molecule in a gas becomes equal to kinetic energy of an electron accelerated from rest through potential difference of 'V' volt?

($$\mathrm{N}=$$ number of molecules, $$\mathrm{R}=$$ gas constant, $$\mathrm{c}=$$ electronic charge)

A
$$\frac{2 \mathrm{eVN}}{3 \mathrm{R}}$$
B
$$\mathrm{\frac{e V N}{R}}$$
C
$$\mathrm{\frac{e V N}{4 R}}$$
D
$$\mathrm{\frac{3 e V N}{2 R}}$$
EXAM MAP
Medical
NEET