1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The equation of state for 2 g of oxygen at a pressure ' $P$ ' and temperature ' $T$, when occupying a volume ' $V$ ' will be

A
$p V=16 R T$
B
$p V=R T$
C
$p V=\frac{1}{16} R T$
D
$p V=2 R T$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The maximum wavelength of radiation emitted by a star is 289.8 nm . Then intensity of radiation for the star is (Given : Stefan's constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$, Wien's constant, $b=2898 \mu \mathrm{mK}$ )

A
$5.67 \times 10^{-12} \mathrm{Wm}^{-2}$
B
$10.67 \times 10^{14} \mathrm{Wm}^{-2}$
C
$5.67 \times 10^8 \mathrm{Wm}^{-2}$
D
$10.67 \times 10^7 \mathrm{Wm}^{-2}$
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If ' $C_P$ ' and ' $C_V$ ' are molar specific heats of an ideal gas at constant pressure and volume respectively. If ' $\lambda$ ' is the ratio of two specific heats and ' $R$ ' is universal gas constant then ' $C_p$ ' is equal to

A
$\frac{R \gamma}{\gamma-1}$
B
$\gamma R$
C
$\frac{1+\gamma}{1-\gamma}$
D
$\frac{R}{\gamma-1}$
4
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A clock pendulum having coefficient of linear expansion. $\alpha=9 \times 10^{-7} /{ }^{\circ} \mathrm{C}^{-1}$ has a period of 0.5 s at $20^{\circ} \mathrm{C}$. If the clock is used in a climate, where the temperature is $30^{\circ} \mathrm{C}$, how much time does the clock lose in each oscillation? ( $g=$ constant)

A
$25 \times 10^{-7} \mathrm{~s}$
B
$5 \times 10^{-7} \mathrm{~s}$
C
$1.125 \times 10^{-6} \mathrm{~s}$
D
$2.25 \times 10^{-6} \mathrm{~s}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12