1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The equation of state for 2 g of oxygen at a pressure ' $P$ ' and temperature ' $T$, when occupying a volume ' $V$ ' will be

A
$p V=16 R T$
B
$p V=R T$
C
$p V=\frac{1}{16} R T$
D
$p V=2 R T$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The maximum wavelength of radiation emitted by a star is 289.8 nm . Then intensity of radiation for the star is (Given : Stefan's constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$, Wien's constant, $b=2898 \mu \mathrm{mK}$ )

A
$5.67 \times 10^{-12} \mathrm{Wm}^{-2}$
B
$10.67 \times 10^{14} \mathrm{Wm}^{-2}$
C
$5.67 \times 10^8 \mathrm{Wm}^{-2}$
D
$10.67 \times 10^7 \mathrm{Wm}^{-2}$
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If ' $C_P$ ' and ' $C_V$ ' are molar specific heats of an ideal gas at constant pressure and volume respectively. If ' $\lambda$ ' is the ratio of two specific heats and ' $R$ ' is universal gas constant then ' $C_p$ ' is equal to

A
$\frac{R \gamma}{\gamma-1}$
B
$\gamma R$
C
$\frac{1+\gamma}{1-\gamma}$
D
$\frac{R}{\gamma-1}$
4
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A clock pendulum having coefficient of linear expansion. $\alpha=9 \times 10^{-7} /{ }^{\circ} \mathrm{C}^{-1}$ has a period of 0.5 s at $20^{\circ} \mathrm{C}$. If the clock is used in a climate, where the temperature is $30^{\circ} \mathrm{C}$, how much time does the clock lose in each oscillation? ( $g=$ constant)

A
$25 \times 10^{-7} \mathrm{~s}$
B
$5 \times 10^{-7} \mathrm{~s}$
C
$1.125 \times 10^{-6} \mathrm{~s}$
D
$2.25 \times 10^{-6} \mathrm{~s}$
MHT CET Subjects
EXAM MAP