For a gas, $$\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{v}}}=0 \cdot 4$$, where $$\mathrm{R}$$ is universal gas constant and $$\mathrm{C}_{\mathrm{v}}$$ is molar specific heat at constant volume. The gas is made up of molecules which are
Two bodies $$\mathrm{A}$$ and $$\mathrm{B}$$ at temperatures '$$\mathrm{T}_1$$' $$\mathrm{K}$$ and '$$\mathrm{T}_2$$' $$\mathrm{K}$$ respectively have the same dimensions. Their emissivities are in the ratio $$1: 3$$. If they radiate the same amount of heat per unit area per unit time, then the ratio of their temperatures $$\left(\mathrm{T}_1: \mathrm{T}_2\right)$$ is
If temperature of gas molecules is raised from $$127^{\circ} \mathrm{C}$$ to $$527^{\circ} \mathrm{C}$$, the ratio of r.m.s. speed of the molecules is respectively
According to Boyle's law, the product PV remains constant. The unit of $$\mathrm{PV}$$ is same as that of