An element $\overrightarrow{\Delta l}=\Delta \mathrm{xi}$ is placed at the origin and carries a current of 10 A . The magnitude of magnetic field on the Y axis at a distance of 0.5 m if $\Delta x=1 \mathrm{~cm}$ is $\left(\frac{\mu_0}{4 \pi}=10^{-7}\right.$ SI unit $)\left(\sin 90^{\circ}=1\right)$
A current ' I ' is flowing in a conductor PQRST as shown in figure. The radius of curved path QRS is ' R ' and length of straight portion PQ and ST is very large. The magnetic field at the centre $[\mathrm{O}]$ of the curved part is ( $\mu_0=$ permeability of free space)

A wire has three different sections as shown in figure. The magnitude of the magnetic field produced at the centre ' $O$ ' of the semicircle by three sections together is ( $\mu_0=$ permiability of free space)

A long wire carrying a steady current is bent into a circle of single turn. The magnetic field at the centre of the coil is ' B '. If it is bent into a circular loop of radius ' $\mathrm{r}_1$ ' having ' n ' turns, the magnetic field at the centre of the coil for same current is