1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A charged particle of charge ' $q$ ' is accelerated by a potential difference ' $V$ ' enters a region of uniform magnetic field ' $B$ ' at right angles to the direction of field. The charged particle completes semicircle of radius ' $r$ ' inside magnetic field. The mass of the charged particle is

A
$\frac{\mathrm{r}^2 q B^2}{2 \mathrm{~V}}$
B
$\frac{r^2 q^2 B^2}{\sqrt{2} V}$
C
$\frac{\mathrm{qrB}}{2 \mathrm{~V}}$
D
$\frac{\mathrm{q}^2 \mathrm{r}^2 \mathrm{~B}^2}{\mathrm{~V}}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A charged particle is moving in a uniform magnetic field in a circular path with radius ' $R$ '. When the energy of the particle is doubled, then the new radius will be

A
$\frac{\mathrm{R}}{\sqrt{2}}$
B
$ 2 R$
C
$\frac{\mathrm{R}}{2}$
D
$\sqrt{2} R$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A massless square loop of wire of resistance ' $R$ ' supporting a mass ' M ' hangs vertically with one of its sides in a uniform magnetic field ' B ' directed outwards in the shaded region. A d.c. voltage ' V ' is applied to the loop. For what value of ' $V$ ' the magnetic force will exactly balance the weight of the supporting mass ' M '? (side of loop = L, $\mathrm{g}=$ acceleration due to gravity)

MHT CET 2024 4th May Morning Shift Physics - Moving Charges and Magnetism Question 28 English

A
$\frac{\mathrm{Mg}}{\mathrm{LBR}}$
B
$\frac{\mathrm{LB}}{\mathrm{MgR}}$
C
$\frac{\mathrm{MgR}}{\mathrm{LB}}$
D
$\frac{\mathrm{LR}}{\mathrm{MgB}}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A thin ring of radius ' $R$ ' carries a uniformly distributed charge. The ring rotates at constant speed ' $N$ ' r.p.s. about its axis perpendicular to the plane. If ' $B$ ' is the magnetic field at the centre, the charge on the ring is ( $\mu_0=$ permeability of free space)

A
$\frac{\mu_0 \mathrm{~N}}{2 \mathrm{RB}}$
B
$\frac{R B}{2 \mu_0 \mathrm{~N}}$
C
$\frac{\mu_0 N}{R B}$
D
$\frac{2 R B}{\mu_0 \mathrm{~N}}$
MHT CET Subjects
EXAM MAP