1
MHT CET 2021 21th September Morning Shift
+2
-0

A lot of 100 bulbs contains 10 defective bulbs. Five bulbs selected at random from the lot and sent to retain store, then the probability that the store will receive at most one defective bulb is

A
0.59049
B
0.91854
C
0.6561
D
0.32805
2
MHT CET 2021 21th September Morning Shift
+2
-0

A coin is tossed and a die is thrown. The probability that the outcome will be head or a number greater than 4 or both, is

A
$$\frac{2}{3}$$
B
$$\frac{1}{6}$$
C
$$\frac{1}{2}$$
D
$$\frac{1}{3}$$
3
MHT CET 2021 21th September Morning Shift
+2
-0

If $$\mathrm{X}$$ is a random variable with p.m.f. as follows.

\begin{aligned} \mathrm{P}(\mathrm{X}=\mathrm{x}) & =\frac{5}{16}, \mathrm{x}=0,1 \\ & =\frac{\mathrm{kx}}{48}, \mathrm{x}=2, \quad \text { then } \mathrm{E}(\mathrm{x})= \\ & =\frac{1}{4}, \mathrm{x}=3 \end{aligned}

A
1.1875
B
1.3125
C
1.5625
D
0.5625
4
MHT CET 2021 20th September Evening Shift
+2
-0

The p.m.f. of a random variable X is $$\mathrm{P(X = x) = {1 \over {{2^5}}}\left( {_x^5} \right),x = 0,1,2,3,4,5}=0$$ then

A
$$\mathrm{P}(\mathrm{X} \leq 2)<\mathrm{P}(\mathrm{X} \geq 3)$$
B
$$\mathrm{P}(\mathrm{X} \leq 2)>\mathrm{P}(\mathrm{X} \geq 3)$$
C
$$\mathrm{P}(\mathrm{X} \leq 2)=2 \mathrm{P}(\mathrm{X} \geq 3)$$
D
$$\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X} \geq 3)$$
EXAM MAP
Medical
NEET