1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A fair die is tossed twice in succession. If $$\mathrm{X}$$ denotes the number of sixes in two tosses, then the probability distribution of $$\mathrm{X}$$ is given by

A
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{25}{36}$$ $$\frac{1}{36}$$ $$\frac{5}{18}$$
B
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{5}{18}$$ $$\frac{1}{36}$$ $$\frac{25}{36}$$
C
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{25}{36}$$ $$\frac{5}{18}$$ $$\frac{1}{36}$$
D
$$\mathrm{X=}x$$ 0 1 2
$$\mathrm{P(X=}x)$$ $$\frac{5}{18}$$ $$\frac{25}{36}$$ $$\frac{1}{36}$$
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a binomial variate $$\mathrm{X}$$ with $$\mathrm{n}=6$$ if $$P(X=4)=\frac{135}{2^{12}}$$, then its variance is

A
$$\frac{8}{9}$$
B
$$\frac{1}{4}$$
C
4
D
$$\frac{9}{8}$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The p.d.f. of a discrete random variable is defined as $$\mathrm{f}(x)=\left\{\begin{array}{l} \mathrm{k} x^2, 0 \leq x \leq 6 \\ 0, \text { otherwise } \end{array}\right.$$

Then the value of $$F(4)$$ (c.d.f) is

A
$$\frac{30}{91}$$
B
$$\frac{30}{97}$$
C
$$\frac{15}{47}$$
D
$$\frac{15}{97}$$
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A player tosses 2 fair coins. He wins ₹5 if 2 heads appear, ₹ 2 if one head appears and ₹ 1 if no head appears. Then the variance of his winning amount in ₹ is :

A
6
B
$$\frac{5}{2}$$
C
$$\frac{9}{4}$$
D
$$\frac{17}{2}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12