1
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
What are the eigen values of the following $$2x2$$ matrix? $$$\left[ {\matrix{ 2 & { - 1} \cr { - 4} & 5 \cr } } \right]$$$
A
$$-1$$ and $$1$$
B
$$1$$ and $$6$$
C
$$2$$ and $$5$$
D
$$4$$ and $$-1$$
2
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Consider the following system of equations in three real variables $$x1, x2$$ and $$x3$$ :
$$2x1 - x2 + 3x3 = 1$$
$$3x1 + 2x2 + 5x3 = 2$$
$$ - x1 + 4x2 + x3 = 3$$
This system of equations has
A
no solution
B
a unique solution
C
more than one but a finite number of solutions
D
an infinite number of solutions
3
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
In an M$$ \times $$N matrix such that all non-zero entries are covered in $$a$$ rows and $$b$$ columns. Then the maximum number of non-zero entries, such that no two are on the same row or column, is
A
$$ \le a + b$$
B
$$ \le \max \left\{ {a,\,b} \right\}$$
C
$$ \le $$ $$\min \left\{ {M - a,\,N - b} \right\}$$
D
$$ \le \min \left\{ {a,\,b} \right\}$$
4
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
If matrix $$X = \left[ {\matrix{ a & 1 \cr { - {a^2} + a - 1} & {1 - a} \cr } } \right]$$
and $${X^2} - X + 1 = 0$$
($${\rm I}$$ is the identity matrix and $$O$$ is the zero matrix), then the inverse of $$X$$ is
A
$$\left[ {\matrix{ {1 - a} & { - 1} \cr {{a^2}} & a \cr } } \right]$$
B
$$\left[ {\matrix{ {1 - a} & { - 1} \cr {{a^2} - a + 1} & a \cr } } \right]$$
C
$$\left[ {\matrix{ { - a} & 1 \cr { - {a^2} + a - 1} & {a - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ {{a^2} - a + 1} & a \cr 1 & {1 - a} \cr } } \right]$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12