1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
How many of the following matrices have an eigen value $$1$$?
$$\left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 1 & { - 1} \cr 1 & 1 \cr } } \right]\,\,and\,\,\left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]$$
$$\left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 1 & { - 1} \cr 1 & 1 \cr } } \right]\,\,and\,\,\left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]$$
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Let $$A$$ be $$a$$ $$4$$ $$x$$ $$4$$ matrix with eigen values $$-5$$, $$-2, 1, 4$$.
Which of the following is an eigen value of $$\left[ {\matrix{ {\rm A} & {\rm I} \cr {\rm I} & {\rm A} \cr } } \right]$$, where $$I$$ is the $$4$$ $$x$$ $$4$$ identity matrix?
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$F$$ is an $$n$$ $$x$$ $$n$$ real matrix. $$b$$ is an $$n$$ $$x$$ $$1$$ real vector. Suppose there are two $$n$$ $$x$$ $$1$$ vectors, $$u$$ and $$v$$ such that $$u \ne v$$, and $$Fu = b,\,\,\,\,Fv = b$$
Which one of the following statements is false?
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
What are the eigen values of the matrix $$P$$ given below?
$$$P = \left( {\matrix{
a & 1 & 0 \cr
1 & a & 1 \cr
0 & 1 & a \cr
} } \right)$$$
Questions Asked from Linear Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2022 (3)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2018 (2)
GATE CSE 2017 Set 2 (1)
GATE CSE 2017 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2016 Set 1 (1)
GATE CSE 2015 Set 1 (3)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (1)
GATE CSE 2014 Set 2 (1)
GATE CSE 2011 (3)
GATE CSE 2010 (1)
GATE CSE 2008 (2)
GATE CSE 2007 (1)
GATE CSE 2006 (2)
GATE CSE 2005 (3)
GATE CSE 2004 (4)
GATE CSE 2003 (1)
GATE CSE 2002 (1)
GATE CSE 1998 (2)
GATE CSE 1997 (1)
GATE CSE 1996 (1)
GATE CSE 1994 (2)
GATE CSE 1987 (2)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages