1
GATE CSE 2008
+2
-0.6
How many of the following matrices have an eigen value $$1$$?
$$\left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr } } \right],\,\,\left[ {\matrix{ 1 & { - 1} \cr 1 & 1 \cr } } \right]\,\,and\,\,\left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]$$
A
one
B
two
C
three
D
four
2
GATE CSE 2008
+2
-0.6
If $$M$$ is a square matrix with a zero determinant, which of the following assertion(s) is (are) correct?
$$S1$$ : Each row of $$M$$ can be represented as a linear combination of the other rows
$$S2$$ : Each column of $$M$$ can be represented as a linear combination of the other columns
$$S3$$ : $$MX$$ $$=$$ $$0$$ has a nontrivial solution
$$S4$$ : $$M$$ has an inverse
A
$$S3$$ and $$S2$$
B
$$S1$$ and $$S4$$
C
$$S1$$ and $$S3$$
D
$$S1$$, $$S2$$, and $$S3$$
3
GATE CSE 2007
+2
-0.6
Let $$A$$ be $$a$$ $$4$$ $$x$$ $$4$$ matrix with eigen values $$-5$$, $$-2, 1, 4$$.

Which of the following is an eigen value of $$\left[ {\matrix{ {\rm A} & {\rm I} \cr {\rm I} & {\rm A} \cr } } \right]$$, where $$I$$ is the $$4$$ $$x$$ $$4$$ identity matrix?

A
$$-5$$
B
$$-7$$
C
$$2$$
D
$$1$$
4
GATE CSE 2006
+2
-0.6
$$F$$ is an $$n$$ $$x$$ $$n$$ real matrix. $$b$$ is an $$n$$ $$x$$ $$1$$ real vector. Suppose there are two $$n$$ $$x$$ $$1$$ vectors, $$u$$ and $$v$$ such that $$u \ne v$$, and $$Fu = b,\,\,\,\,Fv = b$$

Which one of the following statements is false?

A
Dererminant of $$F$$ is zero
B
There are an infinite number of solutions to $$Fx$$ $$=$$ $$b$$
C
There is an $$x \ne 0$$ such that $$Fx = 0$$
D
$$F$$ must have two identical rows
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination