1
GATE CSE 2022
MCQ (Single Correct Answer)
+2
-0.67

Which one of the following is the closed form for the generating function of the sequence (an}n $$\ge$$ 0 defined below?

$${a_n} = \left\{ {\matrix{ {n + 1,} & {n\,is\,odd} \cr {1,} & {otherwise} \cr } } \right.$$

A
$${{x(1 + {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
B
$${{x(3 - {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
C
$${{2x} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
D
$${x \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
2
GATE CSE 2022
MCQ (Single Correct Answer)
+2
-0.67

Consider solving the following system of simultaneous equations using LU decomposition.

x1 + x2 $$-$$ 2x3 = 4

x1 + 3x2 $$-$$ x3 = 7

2x1 + x2 $$-$$ 5x3 = 7

where L and U are denoted as

$$L = \left( {\matrix{ {{L_{11}}} & 0 & 0 \cr {{L_{21}}} & {{L_{22}}} & 0 \cr {{L_{31}}} & {{L_{32}}} & {{L_{33}}} \cr } } \right),\,U = \left( {\matrix{ {{U_{11}}} & {{U_{12}}} & {{U_{13}}} \cr 0 & {{U_{22}}} & {{U_{23}}} \cr 0 & 0 & {{U_{33}}} \cr } } \right)$$

Which one of the following is the correct combination of values for L32, U33, and x1 ?

A
L32 = 2, U33 = $$ - {1 \over 2}$$, x1 = $$-$$ 1
B
L32 = 2, U33 = 2, x1 = $$ - {1 \over 2}$$
C
L32 = $$ - {1 \over 2}$$, U33 = 2, x1 = 0
D
L32 = $$ - {1 \over 2}$$, U33 = $$ - {1 \over 2}$$, x1 = 0
3
GATE CSE 2022
MCQ (More than One Correct Answer)
+2
-0.67

Which of the following is/are the eigenvector(s) for the matrix given below?

$$\left( {\matrix{ { - 9} & { - 6} & { - 2} & { - 4} \cr { - 8} & { - 6} & { - 3} & { - 1} \cr {20} & {15} & 8 & 5 \cr {32} & {21} & 7 & {12} \cr } } \right)$$

A
$$\left( {\matrix{ { - 1} \cr 1 \cr 0 \cr 1 \cr } } \right)$$
B
$$\left( {\matrix{ 1 \cr 0 \cr { - 1} \cr 0 \cr } } \right)$$
C
$$\left( {\matrix{ { - 1} \cr 0 \cr 2 \cr 2 \cr } } \right)$$
D
$$\left( {\matrix{ 0 \cr 1 \cr { - 3} \cr 0 \cr } } \right)$$
4
GATE CSE 2021 Set 2
MCQ (Single Correct Answer)
+2
-0.66

For two n-dimensional real vectors P and Q, the operation s(P, Q) is defined as follows:

$$s\left( {P,\;Q} \right) = \mathop \sum \limits_{i = 1}^n \left( {p\left[ i \right].Q\left[ i \right]} \right)$$

Let L be a set of 10-dimensional non-zero vectors such that for every pair of distinct vectors P, Q ∈ L, s(P, Q) = 0. What is the maximum cardinality possible for the set L ?

A
100
B
10
C
9
D
11
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12