1
GATE CSE 2016 Set 1
Numerical
+2
-0
Consider the recurrence relation
$${a_1} = 8,\,{a_n} = 6{n^2} + 2n + {a_{n - 1}}.$$ Let $${a_{99}} = K \times {10^4}.$$ The value of $$K$$ is ____________.
Your input ____
2
GATE CSE 2016 Set 2
Numerical
+2
-0
The value of the expression $${13^{99}}$$ ($$mod$$ $$17$$), in the range $$0$$ to $$16,$$ is ______________ .
Your input ____
3
GATE CSE 2016 Set 2
Numerical
+2
-0
Let $${A_1},\,{A_2},\,{A_3}$$ and $${A_4}$$ be four matrices of dimensions $$10 \times 5,\,5 \times 20,\,20 \times 10,$$ and $$10 \times 5,$$ respectively. The minimum number of scalar multiplications required to find the product $${A_1}{A_2}{A_3}{A_4}$$ using the basic matrix multiplication method is _________.
Your input ____
4
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $${a_n}$$ represent the number of bit strings of length n containing two consecutive 1s. What is the recurrence relation for $${a_n}$$?
Questions Asked from Linear Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2022 (3)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2018 (2)
GATE CSE 2017 Set 1 (1)
GATE CSE 2017 Set 2 (1)
GATE CSE 2016 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2015 Set 1 (3)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (1)
GATE CSE 2014 Set 2 (1)
GATE CSE 2011 (3)
GATE CSE 2010 (1)
GATE CSE 2008 (2)
GATE CSE 2007 (1)
GATE CSE 2006 (2)
GATE CSE 2005 (3)
GATE CSE 2004 (4)
GATE CSE 2003 (1)
GATE CSE 2002 (1)
GATE CSE 1998 (2)
GATE CSE 1997 (1)
GATE CSE 1996 (1)
GATE CSE 1994 (2)
GATE CSE 1987 (2)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages