For two n-dimensional real vectors P and Q, the operation s(P, Q) is defined as follows:
$$s\left( {P,\;Q} \right) = \mathop \sum \limits_{i = 1}^n \left( {p\left[ i \right].Q\left[ i \right]} \right)$$
Let L be a set of 10-dimensional non-zero vectors such that for every pair of distinct vectors P, Q ∈ L, s(P, Q) = 0. What is the maximum cardinality possible for the set L ?
Consider the following matrix.
$$\left( {\begin{array}{*{20}{c}} 0&1&1&1\\ 1&0&1&1\\ 1&1&0&1\\ 1&1&1&0 \end{array}} \right)$$
The largest eigenvalue of the above matrix is ______
I. rank(AB) = rank(A) rank(B)
II. det(AB) = det(A) det(B)
III. rank(A + B) $$ \le $$ rank(A) + rank(B)
IV. det(A + B) $$ \le $$ det(A) + det(B)
Which of the above statements are TRUE?
Consider the following statements.
$$\left( {\rm I} \right)$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$P$$ does not have an inverse
$$\left( {\rm II} \right)$$ $$\,\,\,\,\,\,\,\,\,\,\,$$ $$P$$ has a repeated eigenvalue
$$\left( {\rm III} \right)$$ $$\,\,\,\,\,\,\,\,\,$$ $$P$$ cannot be diagonalized
Which one of the following options is correct?