1
GATE CSE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$A$$ be $$n\,\, \times \,\,n$$ real valued square symmetric matrix of rank $$2$$ with $$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {A_{ij}^2 = 50.} } $$
Consider the following statements.
$$(I)$$ One eigenvalue must be in $$\left[ { - 5,5} \right]$$
$$(II)$$ The eigenvalue with the largest magnitude must be strictly greater than $$5$$
Which of the above statements about engenvalues of $$A$$ is/are necessarily correct?
A
Both $$(I)$$ and $$(II)$$
B
$$(I)$$ only
C
$$(II)$$ only
D
Neither $$(I)$$ nor $$(II)$$
2
GATE CSE 2017 Set 2
Numerical
+2
-0
If the characteristic polynomial of a $$3 \times 3$$ matrix $$M$$ over $$R$$(the set of real numbers) is $${\lambda ^3} - 4{\lambda ^2} + a\lambda + 30.\,a \in R,$$ and one eigenvalue of $$M$$ is $$2,$$ then the largest among the absolute values of the eigenvalues of $$M$$ is ________.
Your input ____
3
GATE CSE 2016 Set 2
Numerical
+2
-0
Let $${A_1},\,{A_2},\,{A_3}$$ and $${A_4}$$ be four matrices of dimensions $$10 \times 5,\,5 \times 20,\,20 \times 10,$$ and $$10 \times 5,$$ respectively. The minimum number of scalar multiplications required to find the product $${A_1}{A_2}{A_3}{A_4}$$ using the basic matrix multiplication method is _________.
Your input ____
4
GATE CSE 2016 Set 2
Numerical
+2
-0
The value of the expression $${13^{99}}$$ ($$mod$$ $$17$$), in the range $$0$$ to $$16,$$ is ______________ .
Your input ____
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12