1
GATE ME 2014 Set 2
Numerical
+2
-0
Water flows through a $$10$$ $$mm$$ diameter and $$250$$ $$m$$ long smooth pipe at an average velocity of $$0.1$$ $$m/s.$$ The density and the viscosity of water are $$997kg/{m^3}$$ and $$855 \times {10^{ - 6}}$$ $$N.s/{m^2},$$ respectively. Assuming fully-developed flow, the pressure drop (in $$Pa$$) in the pipe is ______________
Your input ____
2
GATE ME 2014 Set 2
Numerical
+2
-0
Consider laminar flow of water over a flat plate of length $$1$$ $$m.$$ If the boundary layer thickness at a distance of $$0.25$$ $$m$$ from the leading edge of the plate is $$8$$ $$mm,$$ the boundary layer thickness (in $$mm$$), at a distance of $$0.75$$ $$m,$$ is __________________
Your input ____
3
GATE ME 2014 Set 3
Numerical
+2
-0
A fluid of dynamic viscosity $$2 \times {10^{ - 5}}\,\,kg/m.s$$ and density $$1kg/{m^3}$$ flows with an average velocity of $$1$$ $$m/s$$ through a long duct of rectangular $$\left( {25\,\,mm \times \,\,15\,\,mm} \right)$$ cross-section. Assuming laminar flow, the pressure drop (in $$Pa$$) in the fully developed region per meter length of the duct is __________________.
Your input ____
4
GATE ME 2006
MCQ (Single Correct Answer)
+2
-0.6
The velocity profile in fully developed laminar flow in a pipe of diameter $$D$$ is given by $$u = {u_0}\left( {1 - 4{r^2}/{D^2}} \right),$$ where $$r$$ is the radial distance from the center. If the viscosity of the fluid is $$\mu ,$$ the pressure drop across a length $$L$$ of the pipe is
A
$${{\mu {u_0}L} \over {{D^2}}}$$
B
$${{4\mu {u_0}L} \over {{D^2}}}$$
C
$${{8\mu {u_0}L} \over {{D^2}}}$$
D
$${{16\mu {u_0}L} \over {{D^2}}}$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12