1
GATE ME 2016 Set 3
Numerical
+2
-0
Consider a fully developed steady laminar flow of an incompressible fluid with viscosity $$\mu $$ through a circular pipe of radius $$R.$$ Given that the velocity at a radial location of $$R/2$$ from the center-line of the pipe is $${U_1},$$ the shear stress at the wall is $$K\mu {U_1}/R,$$ where $$K$$ is _________________.
Your input ____
2
GATE ME 2015 Set 2
Numerical
+2
-0
For a fully developed laminar flow of water (dynamic viscosity $$0.001$$ $$Pa$$-s) through a pipe of radius $$5$$ $$cm,$$ the axial pressure gradient is $$-10$$ $$Pa/m$$. The magnitude of axial velocity (in $$m/s$$) at a radial location of $$0.2$$ $$cm$$ is ____________
Your input ____
3
GATE ME 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The head loss for a laminar incompressible flow through a horizontal circular pipe is $${h_1}$$. Pipe length and fluid remaining the same, if the average flow velocity doubles and the pipe diameter reduces to half its previous value, the head loss is $${h_2}.$$ The ratio $${h_2}/{h_1}$$ is
A
$$1$$
B
$$4$$
C
$$8$$
D
$$16$$
4
GATE ME 2014 Set 2
Numerical
+2
-0
Water flows through a $$10$$ $$mm$$ diameter and $$250$$ $$m$$ long smooth pipe at an average velocity of $$0.1$$ $$m/s.$$ The density and the viscosity of water are $$997kg/{m^3}$$ and $$855 \times {10^{ - 6}}$$ $$N.s/{m^2},$$ respectively. Assuming fully-developed flow, the pressure drop (in $$Pa$$) in the pipe is ______________
Your input ____
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12