1
GATE ME 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The velocity profile inside the boundary layer for flow over a flat plate is given as $${u \over {{U_\infty }}} = \sin \left( {{\pi \over 2}\,{y \over \delta }} \right),$$ where $${U_\infty }$$ is the free stream velocity and $$'\delta '$$ is the local boundary layer thickness. If $${\delta ^ * }$$ is the local displacement thickness, the value of $${{{\delta ^ * }} \over \delta }$$ is
2
GATE ME 2016 Set 1
Numerical
+2
-0
A steady laminar boundary layer is formed over a flat plate as shown in the figure. The free stream velocity of the fluid is $${U_0}.$$ The velocity profile at the inlet $$a$$-$$b$$ is uniform, while that at a downstream location $$c$$-$$d$$ is
given by $$u = {U_0}\left[ {2\left( {{y \over \delta }} \right) - {{\left( {{y \over \delta }} \right)}^2}} \right]$$
given by $$u = {U_0}\left[ {2\left( {{y \over \delta }} \right) - {{\left( {{y \over \delta }} \right)}^2}} \right]$$
The ratio of the mass flow rate, $$\mathop {m{}_{bd}}\limits^ \bullet ,$$ leaving through the horizontal section $$b$$-$$d$$ to that entering through the vertical section $$a$$-$$b$$ is
Your input ____
3
GATE ME 2015 Set 1
Numerical
+2
-0
Air ( $${\rho = 1.2\,\,kg/{m^3}}$$ and kinematic viscosity, $${v = 2 \times {{10}^{ - 5}}{m^2}/s}$$ ) with a velocity of $$2m/s$$ flows over the top surface of a flat plate of length $$2.5m.$$ If the average value of friction coefficient is $${C_f} = {{1.328} \over {\sqrt {{{{\mathop{\rm Re}\nolimits} }_x}} }},\,\,$$ the total drag force (in $$N$$) per unit width of the plate is ____________
Your input ____
4
GATE ME 2012
MCQ (Single Correct Answer)
+2
-0.6
An incompressible fluid flows over a flat plate with zero pressure gradient. The boundary layer thickness is $$1mm$$ at a location where the Reynolds number is $$1000$$. If the velocity of the fluid alone is increased by a factor of $$4,$$ then the boundary layer thickness sat the same location, in $$mm$$ will be
Questions Asked from Boundary Layer (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude