1
GATE CSE 2022
MCQ (More than One Correct Answer)
+2
-0

Which of the following is/are the eigenvector(s) for the matrix given below?

$$\left( {\matrix{ { - 9} & { - 6} & { - 2} & { - 4} \cr { - 8} & { - 6} & { - 3} & { - 1} \cr {20} & {15} & 8 & 5 \cr {32} & {21} & 7 & {12} \cr } } \right)$$

A
$$\left( {\matrix{ { - 1} \cr 1 \cr 0 \cr 1 \cr } } \right)$$
B
$$\left( {\matrix{ 1 \cr 0 \cr { - 1} \cr 0 \cr } } \right)$$
C
$$\left( {\matrix{ { - 1} \cr 0 \cr 2 \cr 2 \cr } } \right)$$
D
$$\left( {\matrix{ 0 \cr 1 \cr { - 3} \cr 0 \cr } } \right)$$
2
GATE CSE 2021 Set 2
MCQ (Single Correct Answer)
+2
-0.66

For two n-dimensional real vectors P and Q, the operation s(P, Q) is defined as follows:

$$s\left( {P,\;Q} \right) = \mathop \sum \limits_{i = 1}^n \left( {p\left[ i \right].Q\left[ i \right]} \right)$$

Let L be a set of 10-dimensional non-zero vectors such that for every pair of distinct vectors P, Q ∈ L, s(P, Q) = 0. What is the maximum cardinality possible for the set L ?

A
100
B
10
C
9
D
11
3
GATE CSE 2021 Set 1
Numerical
+2
-0

Consider the following matrix.

$$\left( {\begin{array}{*{20}{c}} 0&1&1&1\\ 1&0&1&1\\ 1&1&0&1\\ 1&1&1&0 \end{array}} \right)$$

The largest eigenvalue of the above matrix is ______

Your input ____
4
GATE CSE 2020
MCQ (Single Correct Answer)
+2
-0.67
Let A and B be two n$$ \times $$n matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements,

I. rank(AB) = rank(A) rank(B)
II. det(AB) = det(A) det(B)
III. rank(A + B) $$ \le $$ rank(A) + rank(B)
IV. det(A + B) $$ \le $$ det(A) + det(B)

Which of the above statements are TRUE?
A
I and II only
B
II and III only
C
I and IV only
D
III and IV only
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP