1
GATE ME 2006
+2
-0.6
Multiplication of matrices $$E$$ and $$F$$ is $$G.$$ Matrices $$E$$ and $$G$$ are
$$E = \left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr {sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$ and $$G = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
What is the matrix $$F?$$
A
$$\left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr {sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ {\cos \theta } & {\cos \theta } & 0 \cr { - \cos \theta } & {sin\theta } & 0 \cr 0 & 0 & 1 \cr } } \right]\,$$
C
$$\left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr { - sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]\,$$
D
$$\left[ {\matrix{ {sin\theta } & { - \cos \theta } & 0 \cr {\cos \theta } & {sin\theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$
2
GATE ME 2005
+2
-0.6
Which one of the following is an eigen vector of the matrix $$\left[ {\matrix{ 5 & 0 & 0 & 0 \cr 0 & 5 & 0 & 0 \cr 0 & 0 & 2 & 1 \cr 0 & 0 & 3 & 1 \cr } } \right]$$ is
A
$${\left[ {\matrix{ 1 & { - 2} & 0 & 0 \cr } } \right]^T}$$
B
$${\left[ {\matrix{ 0 & { 0} & 1 & 0 \cr } } \right]^T}$$
C
$${\left[ {\matrix{ 1 & { 0} & 0 & -2 \cr } } \right]^T}$$
D
$${\left[ {\matrix{ 1 & { - 1} & 2 & 1 \cr } } \right]^T}$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude
EXAM MAP
Joint Entrance Examination