1
GATE CSE 2000
MCQ (Single Correct Answer)
+2
-0.6
Let P(S) denote the power set of a set S. Which of the following is always true?
A
$$P\,(P(S))\, = P\,(S)$$
B
$$P\,(S)\, \cap \,P\,(P\,(S)) = \{ \emptyset \} $$
C
$$P\,(S)\,\, \cap \,\,S = P\,(S)$$
D
$$S\,\, \notin \,P(S)$$
2
GATE CSE 2000
MCQ (Single Correct Answer)
+2
-0.6
A relation R is defined on the set of integers as zRy if f (x + y) is even. Which of the following statements is true?
A
R is not an equivalence relation
B
R is an equivalence relation having 1 equivalence class
C
R is an equivalence relation having 2 equivalence classes
D
R is an equivalence relation having 3 equivalence classes
3
GATE CSE 1999
Subjective
+2
-0

(a) Mr. X claims the following:
If a relation R is both symmetric and transitive, then R is reflexive. For this, Mr. X offers the following proof.

"From xRy, using symmetry we get yRx. Now because R is transitive, xRy and yRx togethrer imply xRx. Therefore, R is reflextive."


Briefly point out the flaw in Mr. X' proof.

(b) Give an example of a relation R which is symmetric and transitive but not reflexive.

4
GATE CSE 1998
Subjective
+2
-0
Let (A, *) be a semigroup. Furthermore, for every a and b in A, if $$a\, \ne \,b$$, then $$a\,*\,b \ne \,\,b\,*\,a$$.

(a) Show that for every a in A
a * a = a
(b) Show that for every a, b in A
a * b * a = a
(c) Show that for every a, b, c in A
a * b * c = a * c

GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12