1
GATE CSE 2016 Set 1
Numerical
+2
-0
A function $$f:\,\,{N^ + } \to {N^ + },$$ defined on the set of positive integers $${N^ + },$$ satisfies the following properties: $$$\eqalign{ & f\left( n \right) = f\left( {n/2} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,even \cr & f\left( n \right) = f\left( {n + 5} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,odd \cr} $$$

Let $$R = \left\{ i \right.|\exists j:f\left( j \right) = \left. i \right\}$$ be the set of distinct values that $$f$$ takes. The maximum possible size of $$R$$ is _____________________.

Your input ____
2
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Let $$R$$ be a relation on the set of ordered pairs of positive integers such that $$\left( {\left( {p,q} \right),\left( {r,s} \right)} \right) \in R$$ if and only if $$p - s = q - r.$$ Which one of the following is true about $$R$$?
A
Both reflexive and symmetric
B
Reflexive but not symmetric
C
Not reflexive but symmetric
D
Neither reflexive nor symmetric
3
GATE CSE 2015 Set 2
Numerical
+2
-0
The number of onto functions (subjective functions) from set $$X = \left\{ {1,2,3,4} \right\}$$ to set $$Y = \left\{ {a,b,c} \right\}$$ is __________________.
Your input ____
4
GATE CSE 2015 Set 2
Numerical
+2
-0
Let $$X$$ and $$Y$$ denote the sets containing $$2$$ and $$20$$ distinct objects respectively and $$𝐹$$ denote the set of all possible functions defined from $$X$$ to $$Y$$. Let $$f$$ be randomly chosen from $$F.$$ The probability of $$f$$ being one-to-one is ________.
Your input ____
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP