1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the following Hasse diagrams.
Which all of the above represent a lattice?
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
A partial order P is defined on the set of natural numbers as following. Herw x/y denotes integer division.
i) (0, 0) $$ \in \,P$$.
ii) (a, b) $$ \in \,P$$ if and only a %
$$10\, \le $$ b % 10 and
)a/10, b/10) $$ \in \,P$$.
i) (0, 0) $$ \in \,P$$.
ii) (a, b) $$ \in \,P$$ if and only a %
$$10\, \le $$ b % 10 and
)a/10, b/10) $$ \in \,P$$.
Consider the following ordered pairs:
$$\matrix{
{i)\,\,\,(101,\,22)} & {ii)\,\,\,(22,\,\,101)} \cr
{iii)\,\,\,(145,\,\,265)} & {iv)\,\,\,(0,\,153)} \cr
} $$
Which of these ordered pairs of natural numbers are comtained in P?
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Let E, F and G be finite sets.
Let $$X = \,\left( {E\, \cap \,F\,} \right)\, - \,\left( {F\, \cap \,G\,} \right)$$
and $$Y = \,\left( {E\, - \left( {E\, \cap \,G} \right)} \right)\, - \,\left( {E\, - \,F\,} \right)$$. Which one of the following is true?
Let $$X = \,\left( {E\, \cap \,F\,} \right)\, - \,\left( {F\, \cap \,G\,} \right)$$
and $$Y = \,\left( {E\, - \left( {E\, \cap \,G} \right)} \right)\, - \,\left( {E\, - \,F\,} \right)$$. Which one of the following is true?
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the set S = {a, b, c, d}. Consider the following 4 partitions $$\,{\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}$$ on $$S:\,{\pi _1} = \left\{ {\overline {a\,b\,c\,d} } \right\},\,{\pi _2} = \left\{ {\overline {a\,b\,} ,\,\overline {c\,d} } \right\},\,{\pi _3} = \left\{ {\overline {a\,b\,c\,} ,\,\overline d } \right\},\,{\pi _4} = \left\{ {\overline {a\,} ,\,\overline b ,\,\overline c ,\,\overline d } \right\}.$$ Let $$ \prec $$ be the partial order on the set of partitions $$S' = \{ {\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}\} $$ defined as follows: $${\pi _i} \prec \,\,{\pi _j}$$ if and only if $${\pi _i} $$ refines $${\pi _j}$$. The poset diagram for $$(S',\, \prec )$$ is
Questions Asked from Set Theory & Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2023 (2)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2019 (1)
GATE CSE 2018 (1)
GATE CSE 2016 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (2)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 1 (1)
GATE CSE 2012 (1)
GATE CSE 2009 (1)
GATE CSE 2007 (4)
GATE CSE 2006 (4)
GATE CSE 2005 (3)
GATE CSE 2004 (2)
GATE CSE 2002 (1)
GATE CSE 2001 (2)
GATE CSE 2000 (2)
GATE CSE 1999 (1)
GATE CSE 1998 (3)
GATE CSE 1996 (3)
GATE CSE 1995 (1)
GATE CSE 1994 (1)
GATE CSE 1989 (1)
GATE CSE 1988 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages