1
GATE CSE 1998
Subjective
+2
-0
Let (A, *) be a semigroup. Furthermore, for every a and b in A, if $$a\, \ne \,b$$, then $$a\,*\,b \ne \,\,b\,*\,a$$.
(a) Show that for every a in A
a * a = a
(b) Show that for every a, b in A
a * b * a = a
(c) Show that for every a, b, c in A
a * b * c = a * c
2
GATE CSE 1998
MCQ (Single Correct Answer)
+2
-0.6
The binary relation R = {(1, 1)}, (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4) } on the set A = { 1, 2, 3, 4} is
3
GATE CSE 1998
Subjective
+2
-0
Suppose A = {a, b, c, d} and $${\Pi _1}$$ is the following partition of A
$${\Pi _1}\, = \,\{ \{ a,\,\,b,\,\,c\,\} \,,\,\{ d\} \,\} $$
(a) List the ordered pairs of the equivalence relations induced by $${\Pi _1}$$
(b) Draw the graph of the above equivalence relation.
4
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Let R denote the set of real numbers. Let f: $$R\,x\,R \to \,R\,x\,R\,$$ be a bijective function defined by f (x, y ) = (x + y, x - y). The inverse function of f is given by
Questions Asked from Set Theory & Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2023 (2)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2018 (1)
GATE CSE 2016 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (2)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 1 (1)
GATE CSE 2012 (1)
GATE CSE 2009 (1)
GATE CSE 2007 (4)
GATE CSE 2006 (4)
GATE CSE 2005 (3)
GATE CSE 2004 (2)
GATE CSE 2002 (1)
GATE CSE 2001 (2)
GATE CSE 2000 (2)
GATE CSE 1999 (1)
GATE CSE 1998 (3)
GATE CSE 1996 (3)
GATE CSE 1995 (1)
GATE CSE 1994 (1)
GATE CSE 1989 (1)
GATE CSE 1988 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages