1
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\phi $$ be an arbitrary smooth real valued scalar function and $$\overrightarrow V $$ be an arbitrary smooth vector valued function in a three dimensional space. Which one of the following is an identity?
A
$$Curl\left( {\phi \overrightarrow V } \right) = \nabla \left( {\phi Div\overrightarrow V } \right)$$
B
$${Div\overrightarrow V = 0}$$
C
$${Div\,\,Curl\,\,\overrightarrow V = 0}$$
D
$$Div\,\,\left( {\phi \overrightarrow V } \right) = \phi Div\overrightarrow V $$
2
GATE ME 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Curl of vector $$\,\,\overrightarrow F = {x^2}{z^2}\widehat i - 2x{y^2}z\widehat j + 2{y^2}{z^3}\widehat k\,\,$$ is
A
$$\left( {4y{z^3} + 2x{y^2}} \right)\widehat i + 2{x^2}z\widehat j - 2{y^2}z\widehat k$$
B
$$\,\left( {4y{z^3} + 2x{y^2}} \right)\widehat i - 2{x^2}z\widehat j - 2{y^2}z\widehat k$$
C
$$2x{z^2}\widehat i - 4xyz\widehat j + 6{y^2}{z^2}\widehat k$$
D
$$2x{z^2}\widehat i + 4xyz\widehat j + 6{y^2}{z^2}\widehat k$$
3
GATE ME 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the vector field $${x^2}z\widehat i + xy\widehat j - y{z^2}\widehat k\,\,$$ at $$(1, -1, 1)$$ is
A
$$0$$
B
$$3$$
C
$$5$$
D
$$6$$
4
GATE ME 2012
MCQ (Single Correct Answer)
+1
-0.3
For the spherical surface $${x^2} + {y^2} + {z^2} = 1,$$ the unit outward normal vector at the point $$\left( {{1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }},0} \right)$$ is given by
A
$${{1 \over {\sqrt 2 }}\widehat i + {1 \over {\sqrt 2 }}\widehat j}$$
B
$${{1 \over {\sqrt 2 }}\widehat i - {1 \over {\sqrt 2 }}\widehat j}$$
C
$${\widehat k}$$
D
$${{1 \over {\sqrt 3 }}\widehat i + {1 \over {\sqrt 3 }}\widehat j + {1 \over {\sqrt 3 }}\widehat k}$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12