1
GATE ME 2014 Set 2
+1
-0.3
Curl of vector $$\,\,\overrightarrow F = {x^2}{z^2}\widehat i - 2x{y^2}z\widehat j + 2{y^2}{z^3}\widehat k\,\,$$ is
A
$$\left( {4y{z^3} + 2x{y^2}} \right)\widehat i + 2{x^2}z\widehat j - 2{y^2}z\widehat k$$
B
$$\,\left( {4y{z^3} + 2x{y^2}} \right)\widehat i - 2{x^2}z\widehat j - 2{y^2}z\widehat k$$
C
$$2x{z^2}\widehat i - 4xyz\widehat j + 6{y^2}{z^2}\widehat k$$
D
$$2x{z^2}\widehat i + 4xyz\widehat j + 6{y^2}{z^2}\widehat k$$
2
GATE ME 2014 Set 3
+1
-0.3
Divergence of the vector field $${x^2}z\widehat i + xy\widehat j - y{z^2}\widehat k\,\,$$ at $$(1, -1, 1)$$ is
A
$$0$$
B
$$3$$
C
$$5$$
D
$$6$$
3
GATE ME 2012
+1
-0.3
For the spherical surface $${x^2} + {y^2} + {z^2} = 1,$$ the unit outward normal vector at the point $$\left( {{1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }},0} \right)$$ is given by
A
$${{1 \over {\sqrt 2 }}\widehat i + {1 \over {\sqrt 2 }}\widehat j}$$
B
$${{1 \over {\sqrt 2 }}\widehat i - {1 \over {\sqrt 2 }}\widehat j}$$
C
$${\widehat k}$$
D
$${{1 \over {\sqrt 3 }}\widehat i + {1 \over {\sqrt 3 }}\widehat j + {1 \over {\sqrt 3 }}\widehat k}$$
4
GATE ME 2008
+1
-0.3
The divergence of the vector field $$\left( {x - y} \right)\widehat i + \left( {y - x} \right)\widehat j + \left( {x + y + z} \right)\widehat k$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
GATE ME Subjects
EXAM MAP
Medical
NEET