1
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
Let $$p, q, r$$ and $$s$$ be four primitive statements. Consider the following arguments:

$$P:\left[ {\left( {\neg p \vee q} \right) \wedge \left( {r \to s} \right) \wedge \left( {p \vee r} \right)} \right] \to \left( {\neg s \to q} \right)$$
$$Q:\left[ {\left( {\neg p \wedge q} \right) \wedge \left[ {q \to \left( {p \to r} \right)} \right]} \right] \to \neg r$$
$$R:\left[ {\left[ {\left( {q \wedge r} \right) \to p} \right] \wedge \left( {\neg q \vee p} \right)} \right] \to r$$
$$S:\left[ {p \wedge \left( {p \to r} \right) \wedge \left( {q \vee \neg r} \right)} \right] \to q$$

Which of the above arguments are valid?

A
$$P$$ and $$Q$$ only
B
$$P$$ and $$R$$ only
C
$$P$$ and $$S$$ only
D
$$P, Q, R$$ and $$S$$
2
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The following propositional statement is $$$\left( {P \to \left( {Q \vee R} \right)} \right) \to \left( {\left( {P \wedge Q} \right) \to R} \right)$$$
A
Satisfiable but not valid
B
Valid
C
A contradiction
D
None of the above
3
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
The following resolution rule is used in logic programming. Derive clause $$\left( {P \vee Q} \right)$$ from clauses $$\left( {P \vee R} \right)$$, $$\left( {Q \vee \neg R} \right)$$.

Which of the following statements related to this rule is FALSE?

A
$$\left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right) \Rightarrow \left( {P \vee Q} \right)$$ is logically valid
B
$$\left( {P \vee Q} \right) \Rightarrow \left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right)$$ is logically valid
C
$$\left( {P \vee Q} \right)$$ is satisfiable if and only if $${\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)}$$ is satisfiable
D
$$\left( {P \vee Q} \right) \Rightarrow $$ FALSE if and only if both $$P$$ and $$Q$$ are unsatisfiable
4
GATE CSE 2000
MCQ (Single Correct Answer)
+2
-0.6
Let $$a, b, c, d$$ be propositions. Assume that the equivalences $$a \leftrightarrow \left( {b \vee \neg b} \right)$$ and $$b \leftrightarrow c$$ hold. Then the truth value of the formulae $$\left( {a\, \wedge \,b} \right) \to \left( {\left( {a \wedge c} \right) \vee d} \right)$$ is always
A
True
B
False
C
Same as truth value of $$b$$
D
Same as truth value of $$d$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12