1
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $$P, Q$$ and $$R$$ be three atomic prepositional assertions. Let $$X$$ denotes $$\left( {P \vee Q} \right) \to R$$ and $$Y$$ denote $$\left( {P \to R} \right) \vee \left( {Q \to R} \right)$$.

Which one of the following is a tautology?

A
$$X \equiv Y$$
B
$$X \to Y$$
C
$$Y \to X$$
D
$$\neg Y \to X$$
2
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
What is the first order predicate calculus statement equivalent to the following?
Every teacher is liked by some student
A
$$\forall \left( x \right)\left[ {teacher\left( x \right) \to \exists \left( y \right)\left[ {student\left( y \right) \to likes\left( {y,\,x} \right)} \right]} \right]$$
B
$$\forall \left( x \right)\left[ {teacher\left( x \right) \to \exists \left( y \right)\left[ {student\left( y \right) \wedge likes\left( {y,\,x} \right)} \right]} \right]$$
C
$$\exists \left( y \right)\forall \left( x \right)\left[ {teacher\left( x \right) \to \left[ {student\left( y \right) \wedge likes\left( {y,x} \right)} \right]} \right]$$
D
$$\forall \left( x \right)\left[ {teacher\left( x \right) \wedge \exists \left( y \right)\left[ {student\left( y \right) \to likes\left( {y,\,x} \right)} \right]} \right]$$
3
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The following propositional statement is $$$\left( {P \to \left( {Q \vee R} \right)} \right) \to \left( {\left( {P \wedge Q} \right) \to R} \right)$$$
A
Satisfiable but not valid
B
Valid
C
A contradiction
D
None of the above
4
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
Let $$p, q, r$$ and $$s$$ be four primitive statements. Consider the following arguments:

$$P:\left[ {\left( {\neg p \vee q} \right) \wedge \left( {r \to s} \right) \wedge \left( {p \vee r} \right)} \right] \to \left( {\neg s \to q} \right)$$
$$Q:\left[ {\left( {\neg p \wedge q} \right) \wedge \left[ {q \to \left( {p \to r} \right)} \right]} \right] \to \neg r$$
$$R:\left[ {\left[ {\left( {q \wedge r} \right) \to p} \right] \wedge \left( {\neg q \vee p} \right)} \right] \to r$$
$$S:\left[ {p \wedge \left( {p \to r} \right) \wedge \left( {q \vee \neg r} \right)} \right] \to q$$

Which of the above arguments are valid?

A
$$P$$ and $$Q$$ only
B
$$P$$ and $$R$$ only
C
$$P$$ and $$S$$ only
D
$$P, Q, R$$ and $$S$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12