1
GATE CSE 2006
+2
-0.6
Let $$P, Q$$, and $$R$$ be sets. Let $$\Delta$$ denote the symmetric difference operator defined as $$P\Delta Q = \left( {P \cup Q} \right) - \left( {P \cap Q} \right)$$. Using venn diagrams, determine which of the following is/are TRUE.

($${\rm I}$$) $$P\Delta \left( {Q \cap R} \right) = \left( {P\Delta Q} \right) \cap \left( {P\Delta R} \right)$$
($${\rm I}{\rm I}$$) $$P \cap \left( {Q\Delta R} \right) = \left( {P \cap Q} \right)\Delta \left( {P \cap R} \right)$$

A
$${\rm I}$$ only
B
$${\rm I}$$$${\rm I}$$ only
C
Neither $${\rm I}$$ nor $${\rm I}$$$${\rm I}$$
D
Both $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
2
GATE CSE 2005
+2
-0.6
Let $$P, Q$$ and $$R$$ be three atomic prepositional assertions. Let $$X$$ denotes $$\left( {P \vee Q} \right) \to R$$ and $$Y$$ denote $$\left( {P \to R} \right) \vee \left( {Q \to R} \right)$$.

Which one of the following is a tautology?

A
$$X \equiv Y$$
B
$$X \to Y$$
C
$$Y \to X$$
D
$$\neg Y \to X$$
3
GATE CSE 2005
+2
-0.6
Let $$P(x)$$ and $$Q(x)$$ be arbitrary predicates. Which of the following statement is always TRUE?
A
$$\left( {\forall x\left( {P\left( x \right) \vee Q\left( x \right)} \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \vee \left( {\forall xQ\left( x \right)} \right)} \right)$$
B
$$\left( {\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right)$$
C
$$\left( {\left( {\forall x\left( {P\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right) \Rightarrow \left( {\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right)} \right)} \right)$$
D
$$\left( {\left( {\forall x\left( {P\left( x \right)} \right)} \right)} \right) \Leftrightarrow \left( {\forall x\left( {Q\left( x \right)} \right)} \right) \Rightarrow \left( {\forall x\left( {P\left( x \right) \Leftrightarrow Q\left( x \right)} \right)} \right)$$
4
GATE CSE 2005
+2
-0.6
What is the first order predicate calculus statement equivalent to the following?
Every teacher is liked by some student
A
$$\forall \left( x \right)\left[ {teacher\left( x \right) \to \exists \left( y \right)\left[ {student\left( y \right) \to likes\left( {y,\,x} \right)} \right]} \right]$$
B
$$\forall \left( x \right)\left[ {teacher\left( x \right) \to \exists \left( y \right)\left[ {student\left( y \right) \wedge likes\left( {y,\,x} \right)} \right]} \right]$$
C
$$\exists \left( y \right)\forall \left( x \right)\left[ {teacher\left( x \right) \to \left[ {student\left( y \right) \wedge likes\left( {y,x} \right)} \right]} \right]$$
D
$$\forall \left( x \right)\left[ {teacher\left( x \right) \wedge \exists \left( y \right)\left[ {student\left( y \right) \to likes\left( {y,\,x} \right)} \right]} \right]$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination