1
GATE ME 2008
+2
-0.6
In the figure shown, the system is a pure substance kept in a piston- cylinder arrangement. The system is initially a two- phase mixture containing $$1$$ $$kg$$ of liquid and $$0.03$$ $$kg$$ of vapour at a pressure of $$100kPa.$$ Initially, the piston rests on a set of stops, as shown in the figure. A pressure of $$200kPa$$ is required to exactly balance the weight of the piston and the outside atmospheric pressure. Heat transfer takes place into the system until its volume increases by $$50\%$$. Heat transfer to the system occurs in such a manner that the piston, when allowed to move, does so in a very slow (quasi-static / quasi-equilibrium) process. The thermal reservoir from which heat is transferred to the system as a temperature of $${400^ \circ }C$$. Average temperature of the system boundary can be taken as $${175^ \circ }C.$$ Heat transfer to the system is $$1kJ$$, during which its entropy increases by $$10$$ $$J/K.$$ Specific volume of liquid $$\left( {{v_f}} \right)$$ and vapour $$\left( {{v_g}} \right)$$ phases, as well as values of saturation temperatures, are given in the table below. The work done by the system during the process is

A
$$0.1$$ $$kJ$$
B
$$0.2$$ $$kJ$$
C
$$0.3$$ $$kJ$$
D
$$0.4$$ $$kJ$$
2
GATE ME 2008
+2
-0.6
In the figure shown, the system is a pure substance kept in a piston- cylinder arrangement. The system is initially a two- phase mixture containing $$1$$ $$kg$$ of liquid and $$0.03$$ $$kg$$ of vapour at a pressure of $$100kPa.$$ Initially, the piston rests on a set of stops, as shown in the figure. A pressure of $$200kPa$$ is required to exactly balance the weight of the piston and the outside atmospheric pressure. Heat transfer takes place into the system until its volume increases by $$50\%$$. Heat transfer to the system occurs in such a manner that the piston, when allowed to move, does so in a very slow (quasi-static / quasi-equilibrium) process. The thermal reservoir from which heat is transferred to the system as a temperature of $${400^ \circ }C$$. Average temperature of the system boundary can be taken as $${175^ \circ }C.$$ Heat transfer to the system is $$1kJ$$, during which its entropy increases by $$10$$ $$J/K.$$ Specific volume of liquid $$\left( {{v_f}} \right)$$ and vapour $$\left( {{v_g}} \right)$$ phases, as well as values of saturation temperatures, are given in the table below. At the end of the process, which one of the following situations will be true?

A
superheated vapour will be left in the system
B
no vapour will be left in the system
C
a liquid + vapour mixture will be left in the system
D
the mixture will exist at a dry saturate vapour state.
3
GATE ME 2008
+2
-0.6
In the figure shown, the system is a pure substance kept in a piston- cylinder arrangement. The system is initially a two- phase mixture containing $$1$$ $$kg$$ of liquid and $$0.03$$ $$kg$$ of vapour at a pressure of $$100kPa.$$ Initially, the piston rests on a set of stops, as shown in the figure. A pressure of $$200kPa$$ is required to exactly balance the weight of the piston and the outside atmospheric pressure. Heat transfer takes place into the system until its volume increases by $$50\%$$. Heat transfer to the system occurs in such a manner that the piston, when allowed to move, does so in a very slow (quasi-static / quasi-equilibrium) process. The thermal reservoir from which heat is transferred to the system as a temperature of $${400^ \circ }C$$. Average temperature of the system boundary can be taken as $${175^ \circ }C.$$ Heat transfer to the system is $$1kJ$$, during which its entropy increases by $$10$$ $$J/K.$$ Specific volume of liquid $$\left( {{v_f}} \right)$$ and vapour $$\left( {{v_g}} \right)$$ phases, as well as values of saturation temperatures, are given in the table below. The net entropy generation (considering the system and the thermal reservoir together) during the process is closest to

A
$$7.5$$ $$J/K$$
B
$$7.7$$ $$J/K$$
C
$$8.5$$ $$J/K$$
D
$$10$$ $$J/K$$
4
GATE ME 2006
+2
-0.6
Given below is an extract from steam tables. Specific enthalpy of water in $$kJ/kg$$ at $$150$$ bar and $${45^ \circ }C$$ is

A
$$203.60$$
B
$$200.53$$
C
$$196.38$$
D
$$188.45$$
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude
EXAM MAP
Joint Entrance Examination