1
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Given the finite length input x[n] and the corresponding finite length output y[n] of an LTI system as shown below, the impulse response h[n] of the system is GATE EE 2010 Signals and Systems - Linear Time Invariant Systems Question 35 English
A
$$\begin{array}{l}h\left[n\right]=\left\{1,\;0,\;0,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
B
$$\begin{array}{l}h\left[n\right]=\left\{1,\;0,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
C
$$\begin{array}{l}h\left[n\right]=\left\{1,\;1,\;1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
D
$$\begin{array}{l}h\left[n\right]=\left\{1,\;1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
2
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
A cascade of 3 Linear Time Invariant systems is casual and unstable. From this, we conclude that
A
each system in the cascade is individually casual and unstable
B
at least one system is unstable and atleast one system is casual
C
at least one system is casual and all systems are unstable
D
the majority are unstable and the majority are casual
3
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
The $$z$$$$-$$ transform of a signal $$x\left[ n \right]$$ is given by $$4{z^{ - 3}} + 3{z^{ - 1}} + 2 - 6{z^2} + 2{z^3}.$$ It is applied to a system, with a transfer function $$H\left( z \right) = 3{z^{ - 1}} - 2.$$ Let the output be $$y(n)$$. Which of the following is true?
A
$$y\left( n \right)$$ is non causal with finite support
B
$$y\left( n \right)$$ is causal with infinite support
C
$$y\left( n \right)$$ $$ = 0;\,|n| > 3$$
D
$$\eqalign{ & {\mathop{\rm Re}\nolimits} {\left[ {Y\left( z \right)} \right]_{z = {e^{j0}}}} = - {\mathop{\rm Re}\nolimits} {\left[ {Y\left( z \right)} \right]_{z = {e^{j0}}}}; \cr & {\rm I}m{\left[ {Y\left( z \right)} \right]_{z = {e^{j0}}}}\, = {\rm I}m{\left[ {Y\left( z \right)} \right]_z} = {e^{j0}};\,\, - \pi \le \theta < \pi \cr} $$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A system with input $$x(t)$$ and output $$y(t)$$ is defined by the input $$-$$ output relation:
$$y\left( t \right) = \int\limits_{ - \infty }^{ - 2t} {x\left( \tau \right)} d\tau .$$ The system will be
A
causal, time $$-$$ invariant and unstable
B
causal, time $$-$$ invariant and stable
C
non $$-$$ causal, time $$-$$ invariant and unstable
D
non $$-$$ causal, time $$-$$ variant and unstable
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12