1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a linear time invariant system is given as $$G\left( s \right) = {1 \over {{s^2} + 3s + 2}}.$$ The steady state value of the output of this system for a unit impulse input applied at time instant $$t=1$$ will be
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal $$x\left( t \right) = \sin c\left( {\alpha t} \right)$$ where $$\alpha $$ is a real constant $$\left( {\sin \,c\left( x \right) = {{\sin \left( {\pi x} \right)} \over {\pi x}}} \right)$$ is the input to a linear Time invariant system whose impulse response $$h\left( t \right) = \sin c\left( {\beta t} \right)$$ where $$\beta $$ is a real constant. If $$\min \left( {\alpha ,\,\,\beta } \right)$$ denotes the minimum of $$\alpha $$ and $$\beta $$, and similarly $$\max \left( {\alpha ,\,\,\beta } \right)$$ denotes the maximum of $$\alpha $$ and $$\beta $$, and $$K$$ is a constant, which one of the following statements is true about the output of the system?
3
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the discrete-time system shown in the figure where the impulse response of $$G\left( z \right)$$ is
$$g\left( 0 \right) = 0,\,\,g\left( 1 \right) = g\left( 2 \right) = 1,\,g\left( 3 \right) = g\left( 4 \right) = .... = 0$$
$$g\left( 0 \right) = 0,\,\,g\left( 1 \right) = g\left( 2 \right) = 1,\,g\left( 3 \right) = g\left( 4 \right) = .... = 0$$
This system is stable for range of values of $$K$$
4
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
$$X\left( z \right) = 1 - 3\,\,{z^{ - 1}},\,\,Y\left( z \right) = 1 + 2\,\,{z^{ - 2}}$$ are $$Z$$-transforms of two signals $$x\left[ n \right],\,\,y\left[ n \right]$$ respectively. A linear time invariant system has the impulse response $$h\left[ n \right]$$ defined by these two signals as $$h\left[ n \right] = x\left[ {n - 1} \right] * y\left[ n \right]$$ where $$ * $$ denotes discrete time convolution. Then the output of the system for the input $$\delta \left[ {n - 1} \right]$$
Questions Asked from Linear Time Invariant Systems (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics