1
GATE EE 2004
+2
-0.6
In the system shown in Fig. the input $$x\left( t \right) = \sin t.$$ In the steady-state, the response $$y(t)$$ will be A
$${1 \over {\sqrt 2 }}\,\sin \left( {t - {{45}^ \circ }} \right)$$
B
$${1 \over {\sqrt 2 }}\,\sin \left( {t + {{45}^ \circ }} \right)$$
C
$$\sin \left( {t - {{45}^ \circ }} \right)$$
D
$$\sin \left( {t + {{45}^ \circ }} \right)$$
2
GATE EE 2001
+2
-0.6
Given the relationship between the input $$u(t)$$ and the output $$y(t)$$ to be
$$y\left( t \right) = \int\limits_0^t {\left( {2 + t - \tau } \right){e^{ - 3\left( {t - \tau } \right)}}} u\left( \tau \right)d\tau$$
the transfer function $$Y\left( s \right)/U\left( s \right)$$ is
A
$${{2{e^{ - 2s}}} \over {s + 3}}$$
B
$${{s + 2} \over {{{\left( {s + 3} \right)}^2}}}$$
C
$${{2s + 5} \over {s + 3}}$$
D
$${{2s + 7} \over {{{\left( {s + 3} \right)}^2}}}$$
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics
Digital Electronics
EXAM MAP
Joint Entrance Examination